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Abstract

We are considering a semilinear singular perturbation reaction – diffusion boundary value problem
which contains a small perturbation parameter that acts on the highest order derivative. We construct
a difference scheme on an arbitrary nonequidistant mesh using a collocation method and Green’s
function. We show that the constructed difference scheme has a unique solution and that the scheme is
stable. The central result of the paper is ϵ-uniform convergence of almost second order for the discrete
approximate solution on a modified Shishkin mesh. We finally provide two numerical examples which
illustrate the theoretical results on the uniform accuracy of the discrete problem, as well as the
robustness of the method.
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1. Introduction

We consider the semilinear singularly perturbed problem

ϵ2y′′(x) = f(x, y) on [0, 1] , (1)

y(0) = 0, y(1) = 0, (2)
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where 0 < ϵ < 1. We assume that the nonlinear function f is continuously differentiable, i.e. that
f ∈ Ck ([0, 1]× R), for k > 2 and that f has a strictly positive derivative with respect to y

∂f

∂y
= fy > m > 0 on [0, 1]× R (m = const). (3)

The solution y of the problem (1)–(3) exhibits sharp boundary layers at the endpoints of [0, 1] of
O(ϵ ln 1/ϵ) width. It is well known that the standard discretization methods for solving (1)–(3) are
unstable and do not give accurate results when the perturbation parameter ϵ is smaller than some
critical value, see e.g. pages 16–17 of [6] and pages 46–47 of [22] for more details. With this in
mind, we therefore need to develop a method which produces a numerical solution for the starting
problem with a satisfactory value of the error. Moreover, we additionally require that the error does
not depend on ϵ; in this case we say that the method is uniformly convergent with respect to ϵ or
ϵ-uniformly convergent.

More precisely, we are looking for robust methods in the sense of the following definition:

Definition 1.1. [15] Let y be the solution of a singularly perturbed problem, and let y be a numerical
approximation of y obtained by a numerical method with N degrees of freedom. The numerical
method is said to be uniformly convergent or robust with respect to the perturbation parameter ϵ in
the norm ∥·∥ if

∥y − y∥ 6 κ(N) for N > N0

with a function κ satisfying
lim

N→+∞
κ(N) = 0 and ∂ϵκ ≡ 0,

and with some threshold value N0 > 0 that is independent of ϵ.

From definition 1.1 it is evidently clear that the numerical solutions y of given continuous problems
obtained by using a ϵ-uniformly convergent method satisfy the condition

||y − y|| 6 Cκ(N), κ(N) → 0, N → +∞,

where y is the exact solution of the original continuous problem, ∥·∥ is the discrete maximum norm,
N is the number of mesh points that is independent of ϵ and C > 0 is a constant which does not
depend of N or ϵ, see [6, 15] for more information. We therefore demand that the numerical solution
y converges to y for every value of the perturbation parameter in the domain 0 < ϵ < 1 with respect
to the discrete maximum norm ∥·∥ . The problem (1)–(2) has been researched by many authors
with various assumptions on f(x, y). Various different difference schemes have been constructed
which are uniformly convergent on equidistant meshes as well as schemes on specially constructed,
mostly Shishkin and Bakvhvalov-type meshes, where ϵ-uniform convergence of second order has been
demonstrated, see e.g. [11, 13, 14, 24, 26, 28, 29], as well as schemes with ϵ-uniform convergence of
order greater than two, see e.g. [7, 8, 9, 32, 33]. These difference schemes were usually constructed
using the finite difference method and its modifications or collocation methods with polynomial
splines. Nonlinear problems of more general or different type than the problem (1)–(2) were studied
in e.g. [5, 12, 17, 30, 31]. A large number of difference schemes belongs to the group of exponentially
fitted schemes or their uniformly convergent versions. Such schemes were mostly used in numerical
solving of corresponding linear singularly perturbed boundary value problems on equidistant meshes,
see e.g. [4, 10, 19, 21, 27]. They were less frequently used for numerical solving of nonlinear singularly
perturbed boundary value problems, see e.g. [18, 25].
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Our present work represents a synthesis of these two approaches, i.e. we want to construct a difference
scheme which belongs to the group of exponentially fitted schemes and apply this scheme to a
corresponding nonequidistant layer-adapted mesh. The main motivation for constructing such a
scheme is obtaining an ϵ-uniform convergent method, which will be guaranteed by the layer-adapted
mesh, and then further improving the numerical results by using an exponentially fitted scheme.

This method was first presented by Boglaev [2], where the discretisation of the problem (1)–(3) on
a modified Bakhvalov mesh was analysed and first order uniform convergence with respect to ϵ was
demonstrated. Afterwards, Boglaev [3] also analysed the analogous 2D problem. We therefore aim
to construct an ϵ-uniformly convergent difference scheme on a modified Shishkin mesh, using the
results presented in [2].

This paper has the following structure. Section 1. provides background information and introduces
the main concepts used throughout. In Section 2. we construct our difference scheme based on which
we generate the system of equations whose solving gives us the numerical solution values at the mesh
points. We also prove the existence and uniqueness theorem for the numerical solution. In Section
3. we construct the mesh, where we use a modified Shiskin mesh with a smooth enough generating
function in order to discretize the initial problem. In Section 4. we show ϵ-uniform convergence and
its rate. In Section 5. we provide some numerical experiments and discuss our results and possible
future research.

Notation. Throughout this paper we denote by C (sometimes subscripted) a generic positive
constant that may take different values in different formulae, always independent of N and ϵ. We
also (realistically) assume that ϵ 6 C

N
. Throughout the paper, we denote by ∥·∥ the usual discrete

maximum norm ∥u∥ = max
06i6N

|ui| , u ∈ RN+1, as well as the corresponding matrix norm.

2. Scheme construction

Consider the differential equation (1) in an equivalent form

Lϵy(x) := ϵ2y′′(x)− γy(x) = ψ(x, y(x)) on [0, 1] ,

where
ψ(x, y) = f(x, y)− γy, (4)

and γ > m is a chosen constant. In order to obtain a difference scheme needed to calculate the
numerical solution of the boundary value problem (1)–(2), using an arbitrary mesh 0 = x0 < x1 <
x2 < . . . < xN = 1 we construct a solution of the following boundary value problem

Lϵyi(x) = ψ(x, yi(x)) on (xi, xi+1) , (5)

yi(xi) = y(xi), yi(xi+1) = y(xi+1), (6)

for i = 0, 1, . . . , N − 1. It is clear that yi(x) ≡ y(x) on [xi, xi+1] , i = 0, 1, . . . , N − 1. The solutions
of corresponding homogenous boundary value problems

Lϵu
I
i (x) := 0 on (xi, xi+1) , Lϵu

II
i (x) := 0 on (xi, xi+1) ,

uIi (xi) = 1, uIi (xi+1) = 0, uIIi (xi) = 0, uIIi (xi+1) = 1,

for i = 0, 1, . . . , N − 1, are known, see [21], i.e.

uIi (x) =
sinh (β (xi+1 − x))

sinh (βhi)
and uIIi (x) =

sinh (β (x− xi))

sinh (βhi)
,
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for i = 0, 1, . . . , N − 1, where x ∈ [xi, xi+1] , β =

√
γ

ϵ
, hi = xi+1 − xi. The solution of (5)–(6) is given

by

yi(x) = C1u
I
i (x) + C2u

II
i (x) +

∫ xi+1

xi

Gi(x, s)ψ(s, y(s))ds, x ∈ [xi, xi+1] ,

where Gi(x, s) is the Green’s function associated with the operator Lϵ on the interval [xi, xi+1]. The
function Gi(x, s) in this case has the following form

Gi(x, s) =
1

ϵ2wi(s)

{
uIIi (x)uIi (s), xi 6 x 6 s 6 xi+1,
uIi (x)u

II
i (s), xi 6 s 6 x 6 xi+1,

where wi(s) = uIIi (s)
(
uIi
)′
(s)− uIi (s)

(
uIIi
)′
(s). Clearly wi(s) ̸= 0, s ∈ [xi, xi+1]. It follows from the

boundary conditions (6) that C1 = y(xi) =: yi, C2 = y(xi+1) =: yi+1, i = 0, 1, . . . , N − 1. Hence, the
solution yi(x) of (5)–(6) on [xi, xi+1] has the following form

yi(x) = yiu
I
i (x) + yi+1u

II
i (x) +

∫ xi+1

xi

Gi(x, s)ψ(s, y(s))ds. (7)

The boundary value problem

Lϵy(x) := ψ(x, y) on (0, 1) ,

y(0) = y(1) = 0,

has a unique continuously differentiable solution y ∈ Ck+2(0, 1). Since yi(x) ≡ y(x) on [xi, xi+1],
i = 0, 1, . . . , N−1, we have that y′i(xi) = y′i−1(xi), for i = 1, 2, . . . , N−1. Using this in differentiating
(7), we get that

yi−1

(
uIi−1

)′
(xi) + yi

[(
uIIi−1

)′
(xi)−

(
uIi
)′
(xi)

]
+ yi+1

[
−
(
uIIi
)′
(xi)

]
=

∂

∂x

[∫ xi+1

xi

Gi(x, s)ψ(s, y(s))ds−
∫ xi

xi−1

Gi−1(x, s)ψ(s, y(s))ds

]
x=xi

. (8)

Since we have that (
uIi−i

)′
(xi) =

−β
sinh(βhi−1)

,
(
uIIi
)′
(xi) =

β

sinh(βhi)
,(

uIIi−1

)′
(xi)−

(
uIi
)′
(xi) =

β

tanh(βhi−1)
+

β

tanh(βhi)
,

equation (8) becomes

β

sinh(βhi−1)
yi−1 −

(
β

tanh(βhi−1)
+

β

tanh(βhi)

)
yi +

β

sinh(βhi)
yi+1

=
1

ϵ2

 xi∫
xi−1

uIIi−1(s)ψ(s, y(s))ds+

xi+1∫
xi

uIi (s)ψ(s, y(s))ds

 , (9)

for i = 1, 2, . . . , N − 1 and y0 = yN = 0. We cannot in general explicitly compute the integrals
on the RHS of (9). In order to get a simple enough difference scheme, we approximate the func-

tion ψ on [xi−1, xi] ∪ [xi, xi+1] using ψi =
1

4

[
ψ(xi−1, yi−1) + 2ψ(xi, yi) + ψ(xi+1, yi+1)

]
, where yi are



E. Duvnjaković et al., Journal of Modern Methods in Numerical Mathematics 6:1 (2015), 28–43 32

approximate values of the solution y of the problem (1)–(2) at points xi. We get that

β

sinh(βhi−1)
yi−1 −

(
β

tanh(βhi−1)
+

β

tanh(βhi)

)
yi +

β

sinh(βhi)
yi+1

=
1

ϵ2
ψ(xi−1, yi−1) + 2ψ(xi, yi) + ψ(xi+1, yi+1)

4

 xi∫
xi−1

uIIi−1(s)ds+

xi+1∫
xi

uIi (s)ds


=

1

ϵ2
ψ(xi−1, yi−1) + 2ψ(xi, yi) + ψ(xi+1, yi+1)

4

(
cosh(βhi−1)− 1

β sinh(βhi−1)
+

cosh(βhi)− 1

β sinh(βhi)

)
,

for i = 1, 2, . . . , N − 1 and y0 = yN = 0. Using equation (4), we get that

(3ai + di +∆di+1)
(
yi−1 − yi

)
− (3ai+1 + di+1 +∆di)

(
yi − yi+1

)
−
f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
(∆di +∆di+1) = 0, (10)

for i = 1, 2, . . . , N − 1 and y0 = yN = 0, where

ai =
1

sinh(βhi−1)
, di =

1

tanh(βhi−1)
, ∆di = di − ai. (11)

Using the scheme (10) we form a corresponding discrete analogue of (1)–(3)

F0y := y0 = 0, (12)

Fiy :=
γ

∆di +∆di+1

[
(3ai + di +∆di+1)

(
yi−1 − yi

)
− (3ai+1 + di+1 +∆di)

(
yi − yi+1

)
−
f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
(∆di +∆di+1)

]
= 0, (13)

FNy := yN = 0, (14)

where i = 1, 2, . . . , N − 1. The solution y := (y0, y1, . . . , yN)
T of the problem (12)–(14), i.e. Fy = 0,

where F = (F0, F1, . . . , FN)
T is an approximate solution of the problem (1)–(3).

Theorem 2.1. The discrete problem (12)–(14) has a unique solution y for γ > fy. Also, for every
u, v ∈ RN+1 we have the following stabilizing inequality

∥u− v∥ 6 1

m
∥Fu− Fv∥ .

Proof. We use a technique from [9] and [32], while the proof of existence of the solution of Fy = 0
is based on the proof of the relation: ∥ (F ′)−1 ∥ 6 C, where F ′ is the Fréchet derivative of F . The
Fréchet derivative H := F ′(y) is a tridiagonal matrix. Let H = [hij]. The non-zero elements of this
tridiagonal matrix are

h0,0 = hN,N = 1,

hi,i =
2γ

∆di +∆di+1

[
−(ai + ai+1)− 2(di + di+1)−

1

γ

∂f

∂y
(xi, yi)(∆di +∆di+1)

]
< 0,

hi,i−1 =
γ

∆di +∆di+1

[
(∆di +∆di+1)

(
1− 1

γ

∂f

∂y
(xi−1, yi−1)

)
+ 4ai

]
> 0,

hi,i+1 =
γ

∆di +∆di+1

[
(∆di+1 +∆di)

(
1− 1

γ

∂f

∂y
(xi+1, yi+1)

)
+ 4ai+1

]
> 0,
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where i = 1, . . . , N −1. Hence H is an L–matrix. Moreover, H is an M–matrix since |hi,i|− |hi,i−1|−
|hi−1,i| > 4m. Consequently ∥∥H−1

∥∥ 6 1

m
. (15)

Using Hadamard’s theorem (see e.g. Theorem 5.3.10 from [20]), we get that F is an homeomorphism.
Since clearly RN+1 is non-empty and 0 is the only image of the mapping F , we have that (12)–(14)
has a unique solution.
The proof of second part of the Theorem 2.1 is based on a part of the proof of Theorem 3 from
[7]. We have that Fu − Fv = (F ′w) (u − v) for some w = (w0, w1, . . . , wN)

T ∈ RN+1. Therefore
u− v = (F ′w)−1 (Fu− Fv) and finally due to inequality (15) we have that

∥u− v∥ =
∥∥(F ′w)−1(Fu− Fv)

∥∥ 6 1

m
∥Fu− Fv∥ .

3. Mesh construction

Since the solution of the problem (1)–(3) changes rapidly near x = 0 and x = 1, the mesh has to be
refined there. Various meshes have been proposed by various authors. The most frequently analyzed
are the exponentially graded meshes of Bakhvalov, see [1], and piecewise uniform meshes of Shishkin,
see [23].

Here we use the smoothed Shishkin mesh from [16] and we construct it as follows. Let N + 1 be the
number of mesh points and q ∈ (0, 1/2) and σ > 0 are mesh parameters. We define the Shishkin
mesh transition point by

λ := min

{
σϵ√
m

lnN, q

}
and we choose σ = 2.

Remark 3.1. For the sake of simplicity in representation, we assume that λ = 2ϵ(
√
m)−1 lnN , as

otherwise the problem can be analyzed in the classical way. We shall also assume that qN is an
integer. This is easily achieved by choosing q = 1/4 and N divisible by 4 for example.

The mesh ∆ : x0 < x1 < · · · < xN is generated by xi = φ(i/N) with the mesh generating function

φ(t) :=


λ
q
t t ∈ [0, q],

p(t− q)3 + λ
q
t t ∈ [q, 1/2],

1− φ(1− t) t ∈ [1/2, 1],

(16)

where p is chosen such that φ(1/2) = 1/2, i.e. p = 1
2
(1 − λ

q
)(1

2
− q)−3. Note that φ ∈ C1[0, 1] with

∥φ′∥∞ , ∥φ′′∥∞ 6 C. Therefore we have that the mesh sizes hi = xi+1 − xi, i = 0, 1, . . . , N − 1 satisfy

hi =

∫ i+1
N

i
N

φ′(t)dt 6 CN−1, (17)

|hi+1 − hi| =

∣∣∣∣∣
∫ i+1

N

i
N

∫ t+ 1
N

t

φ′′(s)ds

∣∣∣∣∣ 6 CN−2. (18)
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4. Uniform convergence

In this section we prove the theorem on ϵ-uniform convergence of the discrete problem (12)–(14).
The proof uses the decomposition of the solution y to the problem (1)–(2) to the layer s and a regular
component r given by

Theorem 4.1. [29] The solution y to problem (1)–(2) can be represented as

y = r + s,

where for j = 0, 1, . . . , k + 2 and x ∈ [0, 1] we have that∣∣r(j)(x)∣∣ 6 C, (19)∣∣s(j)(x)∣∣ 6 Cϵ−j
(
e−

x
ϵ

√
m + e−

1−x
ϵ

√
m
)
. (20)

Remark 4.2. Note that e−
x
ϵ

√
m > e−

1−x
ϵ

√
m for x ∈ [0, 1/2] and e−

x
ϵ

√
m 6 e−

1−x
ϵ

√
m for x ∈ [1/2, 1].

These inequalities and the estimate (20) imply that the analysis of the error value can be done on

the part of the mesh which corresponds to x ∈ [0, 1/2] omitting the function e−
1−x
ϵ

√
m, keeping in

mind that on this part of the mesh we have that hi−1 6 hi. An analogous analysis would hold for
the part of the mesh which corresponds to x ∈ [1/2, 1] but with the omision of the function e−

x
ϵ

√
m

and using the inequality hi−1 > hi.

From here on in we use ϵ2y′′(xk) = f(xk, y(xk)), k ∈ {i− 1, i, i+ 1} , and

yi−1 − yi =− y′ihi−1 +
y′′i
2
h2i−1 −

y′′′i
6
h3i−1 +

y(iv)(ζ−i−1)

24
h4i−1, (21)

yi − yi+1 =− y′ihi −
y′′i
2
h2i −

y′′′i
6
h3i −

y(iv)(ζ+i )

24
h4i , (22)

y′′i−1 = y′′i − y′′′i hi−1 +
y(iv)(ξ−i−1)

2
h2i−1, (23)

y′′i+1 = y′′i + y′′′i hi +
y(iv)(ξ+i )

2
h2i , (24)

where ζ−i−1, ξ
−
i−1 ∈ (xi−1, xi), ζ

+
i , ξ

+
i ∈ (xi, xi+1). We begin with a lemma that will be used further on

in the proof on the uniform convergence.

Lemma 4.3. On the part of the modified Shishkin mesh (16) where xi, xi±1 ∈
[
xN/4−1, λ

]
∪ [λ, 1/2],

assuming that ϵ 6 C
N
, for i = N

4
, . . . , N

2
− 1 we have the following estimate(

cosh(βhi−1)− 1

γ sinh(βhi−1)
+
cosh(βhi)− 1

γ sinh(βhi)

)−1∣∣∣∣ yi−1 − yi
sinh(βhi−1)

− yi − yi+1

sinh(βhi)

∣∣∣∣6 C

N2
. (25)

Proof. We are using the decomposition from Theorem 4.1 and expansions (23), (24). For the
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regular component r we have that

(
cosh(βhi−1)− 1

γ sinh(βhi−1)
+

cosh(βhi)− 1

γ sinh(βhi)

)−1 ∣∣∣∣ ri−1 − ri
sinh(βhi−1)

− ri − ri+1

sinh(βhi)

∣∣∣∣ 6 γ

∣∣∣∣∣∣∣∣∣∣
r′i

βhi−1hi

+∞∑
n=1

β2n(h2n
i −h2n

i−1)

(2n+1)!

+∞∑
n=1

(βhi)2n

(2n)!
sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣∣∣∣∣
r′′(µ+

i )

2

+∞∑
n=0

(βhi−1)
2n+1

(2n+1)!
h2i

(cosh(βhi)− 1) sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣∣∣∣∣
r′′(µ−

i )

2

+∞∑
n=0

(βhi)
2n+1

(2n+1)!
h2i−1

(cosh(βhi)− 1) sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
. (26)

First we want to estimate the expressions containing only the first derivatives in the RHS of inequality
(26). From the identity an−bn = (a−b)(an−1+an−2b+. . .+abn−2+bn−1), n ∈ N, and the inequalities
hi−1 6 hi, i = 1, . . . , N

2
− 1, we get that hni − hni−1 6 n(hi − hi−1)h

n−1
i , which yields that

β2n(h2ni − h2ni−1)

(2n+ 1)!
<
β2n(h2i − h2i−1)h

2(n−1)
i

(2n)!
, ∀n ∈ N. (27)

Using inequality (27) together with (19), we get that

γ

∣∣∣∣∣∣∣∣∣∣
r′i

βhi−1hi

+∞∑
n=1

β2n(h2ni − h2ni−1)

(2n+ 1)!

+∞∑
n=1

(βhi)
2n

(2n)!
sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
6 C(hi − hi−1). (28)

Now we want to estimate the terms containing the second derivatives from the RHS of (26). Using
inequality (19) we get that∣∣∣∣∣∣

r′′(µ+
i )

2

∑+∞
n=0

(βhi−1)
2n+1

(2n+1)!
h2i

(cosh(βhi)− 1) sinh(βhi−1)

∣∣∣∣∣∣ 6
∣∣∣∣r′′(µ+

i )h
2
i

β2h2i

∣∣∣∣ 6 Cϵ2, (29)

∣∣∣∣∣∣∣∣∣∣
r′′(µ−

i )

2

+∞∑
n=0

(βhi)
2n+1

(2n+ 1)!
h2i−1

(cosh(βhi)− 1) sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
6 C(ϵ2 + hi−1hi). (30)

For the layer component s, first we have that(
cosh(βhi−1)− 1

γ sinh(βhi−1)
+

cosh(βhi)− 1

γ sinh(βhi)

)−1 ∣∣∣∣ si−1 − si
sinh(βhi−1)

− si − si+1

sinh(βhi)

∣∣∣∣
6 γ

∣∣∣∣∣∣∣∣∣∣
βhi(si−1 − si)− βhi−1(si − si+1)

+∞∑
n=1

(βhi)2n

(2n)!
sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
+

γβhi

+∞∑
n=1

(βhi)
2n

(2n+1)!

sinh(βhi−1)
+∞∑
n=1

(βhi)2n

(2n)!

|si−1 − si|+ γ

+∞∑
n=1

(βhi−1)
2n

(2n+1)!

+∞∑
n=1

(βhi)2n

(2n)!

|si − si+1|.

(31)
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We look at the terms on the RHS of (31) separately. The first term of the RHS of (31) can be
bounded by

γ

∣∣∣∣∣∣∣∣∣∣
βhi(si−1 − si)− βhi−1(si − si+1)

+∞∑
n=1

(βhi)
2n

(2n)!
sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
6 γ

∣∣∣∣∣∣
βhi

[
−s′ihi−1 +

s′′(µ−
i )

2
h2i−1

]
− βhi−1

[
−
(
s′ihi +

s′′(µ+
i )

2
h2i

)]
β2h2

i

2
βhi−1

∣∣∣∣∣∣ 6 C

N2
, (32)

which we also obtain for the third term of the RHS of (31), i.e.

γ

+∞∑
n=1

(βhi−1)
2n

(2n+ 1)!

+∞∑
n=1

(βhi)
2n

(2n)!

|si − si+1| 6
C

N2
. (33)

The second term RHS of (31) contains the ratio
βhi

sinh(βhi−1)
. Although this ratio is bounded by

hi
hi−1

, this quotient is not bounded for xi = λ when ϵ→ 0. This is why we are going to estimate this

expression separately on the transition part and on the nonequidistant part of the mesh. In the case

i = N
4
, using the fact that

+∞∑
n=1

x2n

(2n)!
= cosh x − 1,

+∞∑
n=1

x2n+1

(2n+1)!
= sinh x − x, ∀x ∈ R, and the fact that

the function r(x) = sinhx−x
coshx−1

takes values from the interval (0, 1) when x > 0, we have that the second
term RHS of (31) can be bounded by

γ

∣∣∣∣∣∣∣∣∣∣
βhi

+∞∑
n=1

(βhi)
2n

(2n+1)!
(si−1 − si)

+∞∑
n=1

(βhi)
2n

(2n)!
sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
6 γ

|si−1 − si|
sinh(βhi−1)

6 C

N2
. (34)

In the case when i = N
4
+ 1, . . . , N

2
− 1, we can use

∑+∞
n=1

x2n

(2n+1)!∑+∞
n=1

x2n

(2n)!

= sinhx−x
x(coshx−1)

= p(x) and 0 < p(x) < 1
3

for x > 0 and therefore the second term from the RHS of (31) can be bounded by

γ

∣∣∣∣∣∣∣∣∣∣
βhi

+∞∑
n=1

(βhi)
2n

(2n+1)!
(si−1 − si)

+∞∑
n=1

(βhi)
2n

(2n)!
sinh(βhi−1)

∣∣∣∣∣∣∣∣∣∣
6 γ

βhi
βhi−1

+∞∑
n=1

(βhi)
2n

(2n+ 1)!

+∞∑
n=1

(βhi)
2n

(2n)!

|si−1 − si| 6
C

N2
. (35)

Using equations (17), (18), (26) and (28)–(35), we complete the proof of the lemma.
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Now we state the main theorem on ϵ−uniform convergence of our difference scheme and specially
chosen layer-adapted mesh.

Theorem 4.4. The discrete problem (12)–(14) on the mesh from Section 2. is uniformly convergent
with respect to ϵ and

max
i

|yi − yi| ≤ C



ln2N

N2
, i = 0, . . . , N

4
− 1

1

N2
, i = N

4
, . . . , 3N

4

ln2N

N2
, i = 3N

4
+ 1, . . . , N,

where y is the solution of the problem (1), y is the corresponding numerical solution of (12)–(14)
and C > 0 is a constant independent of N and ϵ.

Proof. We shall use the technique from [32], i.e. since we have stability from Theorem 2.1, we have
that ∥y − y∥ 6 C ∥Fy − Fy∥ and since (12)–(14) implies that Fy = 0, it only remains to estimate
∥Fy∥.
Let i = 0, 1, . . . , N

4
−1. The discrete problem (12)–(14) can be written down on this part of the mesh

in the following form

F0y = 0,

Fiy =
γ

∆di +∆di+1

[
(3ai + di +∆di+1) (yi−1 − yi)− (3ai+1 + di+1 +∆di) (yi − yi+1)

−f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
(∆di +∆di+1)

]
=

γ

2∆di

[
(3ai + di +∆di) (yi−1 − yi − (yi − yi+1))

−2
f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
∆di

]
=

γ

2(cosh(βhi)− 1)

[
(2 + 2 cosh(βhi)) (yi−1 − yi − (yi − yi+1))

−2
f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
(cosh(βhi)− 1)

]
,

for i = 1, 2, . . . , N
4
− 1. Using the expansions (21) and (22), we get that

Fiy =
γ

β2h2i + 2O (β4h4i )

[(
4 + β2h2i + 2O

(
β4h4i

))(
y′′i h

2
i +

y(iv)
(
ζ−i−1

)
+ y(iv)

(
ζ+i
)

24
h4i

)

− 1

β2

(
4y′′i +

y(iv)
(
ξ−i−1

)
+ y(iv)

(
ξ+i
)

2
h2i

)(
β2h2i + 2O

(
β4h4i

))]
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=
γ

β2h2i + 2O (β4h4i )

[
4
y(iv)

(
ζ−i−1

)
+ y(iv)

(
ζ+i
)

24
h4i

+
(
β2h2i + 2O

(
β4h4i

))(
y′′i h

2
i +

y(iv)
(
ζ−i−1

)
+ y(iv)

(
ζ+i
)

24
h4i

)

− 8

γ
ϵ2y′′i O

(
β4h4i

)
−
ϵ2
(
y(iv)

(
ξ−i−1

)
+ y(iv)

(
ξ+i
))

2γ
h2i
[
β2h2i + 2O

(
β4h4i

)]]
,

for i = 1, . . . , N
4
− 1 and hence |Fiy| 6

C ln2N

N2
, for i = 0, 1, . . . , N

4
− 1.

Now let i = N
4
, . . . , N

2
− 1. We rewrite equations (12)–(14) as

Fiy =
γ

∆di +∆di+1

[
(∆di +∆di+1) (yi−1 − yi − (yi − yi+1)) + 4 (ai(yi−1 − yi)− ai+1(yi − yi+1))

− f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
(∆di +∆di+1)

]
.

We estimate the linear and the nonlinear term separately. For the nonlinear term we get

γ

∆di +∆di+1

∣∣∣∣f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)

γ
(∆di +∆di+1)

∣∣∣∣
= |f(xi−1, yi−1) + 2f(xi, yi) + f(xi+1, yi+1)| = ϵ2

∣∣y′′i−1 + 2y′′i + y′′i+1

∣∣ 6 C

N2
.

For the linear term, using the triangle inequality, (25) and (11), we get that

γ

∆di +∆di+1

∣∣∣(∆di +∆di+1) (yi−1 − yi − yi + yi+1) + 4 [ai(yi−1 − yi)− ai+1(yi − yi+1)]
∣∣∣ 6 C

N2

Hence, we get that |Fiy| 6
C

N2
for i = N

4
, . . . , N

2
− 1.

The proof for i = 3N
4

+ 1, . . . , N is analogous to the case i = 0, 1, . . . , N
4
− 1 and the proof for

i = N
2
+ 1, . . . , 3N

4
is analogous to the case i = N

4
, N

2
− 1 in view of Remark 4.2 and Lemma 4.3.

Finally, the case i = N
2
is simply shown since hN/2−1 = hN/2, e

−x
ϵ

√
m ≪ ϵ2 and e−

1−x
ϵ

√
m ≪ ϵ2 for

x ∈ [xN/2−1, xN/2+1].

5. Numerical results

In this section we present numerical results to confirm the uniform accuracy of the discrete problem
(12)–(14). To demonstrate the efficiency of the method, we present two examples having boundary
layers. The problems from our examples have known exact solutions, so we calculate EN as

EN = max
06i6N

∣∣y(xi)− yN(xi)
∣∣ , (36)

where yN(xi) is the value of the numerical solutions at the mesh point xi, where the mesh has N
subintervals, and y(xi) is the value of the exact solution at xi. The rate of convergence Ord is
calculated using

Ord =
lnEN − lnE2N

ln 2k
k+1

,

where N = 2k, k = 6, 7, . . . , 13. Tables 1 and 2 give the numerical results for our two examples and
we can see that the theoretical and experimental results match.
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Example 5.1. Consider the following problem, see [9]

ϵ2y′′ = y + cos2(πx) + 2(ϵπ)2 cos(2πx) for x ∈ (0, 1), y(0) = y(1) = 0.

The exact solution of this problem is given by y(x) =
e−

x
ϵ + e−

1−x
ϵ

1 + e−
1
ϵ

− cos2(πx). The nonlinear system

was solved using the initial condition y0 = −0.5 and the value of the constant γ = 1.
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Figure 1: Numerical solution graphs from example 5.1 for values ϵ = 2−3, 2−5, 2−7

N En Ord En Ord En Ord En Ord En Ord
26 1.0212e− 03 2.61 2.8612e− 03 2.01 3.1123e− 03 2.08 4.3466e− 03 2.08 4.6523e− 03 2.08
27 2.5012e− 04 2.23 9.6837e− 04 2.11 1.0144e− 03 2.07 1.4166e− 03 2.06 1.5163e− 03 2.04
28 7.1810e− 05 2.01 2.9732e− 04 2.09 3.1849e− 04 2.04 4.4730e− 04 2.05 4.7876e− 04 2.05
29 2.2591e− 05 2.03 8.9328e− 05 2.00 9.8480e− 05 2.00 1.3752e− 04 2.00 1.4719e− 04 2.02
210 6.8505e− 06 2.00 2.7570e− 05 2.00 3.0395e− 05 2.00 4.2443e− 05 2.00 4.5428e− 05 2.00
211 2.0723e− 06 2.00 8.3400e− 06 2.00 9.1945e− 06 2.00 1.2839e− 05 2.00 1.3742e− 05 2.00
212 6.1654e− 07 2.00 2.4813e− 06 2.00 2.7356e− 06 2.00 3.8197e− 06 2.00 4.0885e− 06 2.00
213 1.8090e− 07 − 7.2803e− 07 − 8.0262e− 07 − 1.1208e− 06 − 1.1996e− 06 −
ϵ 2−3 2−5 2−7 2−10 2−15

N En Ord En Ord En Ord En Ord En Ord
26 4.6579e− 03 2.08 4.6579e− 03 2.08 4.6579e− 03 2.08 4.6579e− 03 2.08 4.6796e− 03 2.06
27 1.5181e− 03 2.04 1.5181e− 03 2.04 1.5181e− 03 2.04 1.5181e− 03 2.04 1.5417e− 03 2.02
28 4.7934e− 04 2.05 4.7934e− 04 2.05 4.7934e− 04 2.05 4.7934e− 04 2.05 4.9781e− 03 2.03
29 1.4736e− 04 2.02 1.4736e− 04 2.02 1.4736e− 04 2.02 1.4736e− 04 2.02 1.5481e− 04 2.00
210 4.5483e− 05 2.00 4.5483e− 05 2.00 4.5483e− 05 2.00 4.5483e− 05 2.00 4.7782e− 05 2.00
211 1.3758e− 05 2.00 1.3758e− 05 2.00 1.3758e− 05 2.00 1.3758e− 05 2.00 1.4454e− 05 2.00
212 4.0934e− 06 2.00 4.0934e− 06 2.00 4.0934e− 06 2.00 4.0934e− 06 2.00 4.3004e− 06 2.00
213 1.2010e− 06 − 1.2010e− 06 − 1.2010e− 06 − 1.2010e− 06 − 1.2617e− 06 −
ϵ 2−25 2−30 2−35 2−40 2−45

Table 1: Error EN and convergence rates Ord for approximate solution for example 5.1
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Example 5.2. Consider the following problem

ϵ2y′′ = (y − 1)(1 + (y − 1)2) + g(x) for x ∈ (0, 1), y(0) = (1) = 0,

where g(x) =
cosh3 1−2x

2ϵ3

cosh3 1
2ϵ

. The exact solution of this problem is given by y(x) = 1 − e−
x
ϵ + e−

1−x
ϵ

1 + e−
1
ϵ

.

The nonlinear system was solved using the initial guess y0 = 1. The exact solution implies that
0 6 y 6 1, ∀x ∈ [0, 1], so the value of the constant γ = 4 was chosen in such a way as to have that
γ > fy(x, y), ∀(x, y) ∈ [0, 1]× [0, 1] ⊂ [0, 1]× R.
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Figure 2: Numerical solution graphs from example 5.2 for values ϵ = 2−3, 2−5, 2−7



E. Duvnjaković et al., Journal of Modern Methods in Numerical Mathematics 6:1 (2015), 28–43 41

N En Ord En Ord En Ord En Ord En Ord
26 1.7568e− 03 2.45 3.0164e− 03 1.98 3.1822e− 03 2.08 4.6272e− 03 2.08 6.7583e− 03 2.08
27 4.6905e− 04 2.33 1.0375e− 03 2.18 1.0371e− 03 2.17 1.5081e− 03 2.06 2.2026e− 03 2.04
28 1.2733e− 04 1.99 3.0632e− 04 2.24 3.0792e− 04 2.24 4.7617e− 04 2.09 7.0331e− 04 2.05
29 4.0521e− 05 2.00 8.4422e− 05 2.00 8.4863e− 05 2.00 1.4306e− 04 2.04 2.1622e− 04 2.02
210 1.2507e− 05 2.00 2.6056e− 05 2.00 2.6192e− 05 2.00 4.3129e− 05 2.00 6.5955e− 05 2.00
211 3.7832e− 06 2.00 7.8820e− 06 2.00 7.9231e− 06 2.00 1.3046e− 05 2.00 1.9951e− 05 2.00
212 1.1256e− 06 2.00 2.3451e− 06 2.00 2.3573e− 06 2.00 3.8816e− 06 2.00 5.9356e− 06 2.00
213 3.3025e− 07 − 6.8805e− 07 − 6.9164e− 07 − 1.1389e− 06 − 1.7416e− 06 −
ϵ 2−3 2−5 2−7 2−10 2−15

N En Ord En Ord En Ord En Ord En Ord
26 6.7592e− 03 2.08 6.7592e− 03 2.08 6.7592e− 03 2.08 6.7592e− 03 2.08 6.8012e− 03 2.08
27 2.2029e− 03 2.04 2.2029e− 03 2.04 2.2029e− 03 2.04 2.2029e− 03 2.04 2.2166e− 03 2.02
28 7.0340e− 04 2.05 7.0340e− 04 2.05 7.0340e− 04 2.05 7.0340e− 04 2.05 7.1574e− 03 2.01
29 2.1625e− 04 2.02 2.1625e− 04 2.02 2.1625e− 04 2.02 2.1625e− 04 2.02 2.2516e− 04 1.99
210 6.5974e− 05 2.00 6.5974e− 05 2.00 6.5974e− 05 2.00 6.5974e− 05 2.00 6.9905e− 05 2.00
211 1.9954e− 05 2.00 1.9954e− 05 2.00 1.9954e− 05 2.00 1.9954e− 05 2.00 2.1146e− 05 2.00
212 5.9367e− 06 2.00 5.9367e− 06 2.00 5.9367e− 06 2.00 5.9367e− 06 2.00 6.2918e− 06 2.00
213 1.7419e− 06 − 1.7419e− 06 − 1.7419e− 06 − 1.7419e− 06 − 1.8493e− 06 −
ϵ 2−25 2−30 2−35 2−40 2−45

Table 2: Error EN and convergence rates Ord for approximate solution for example 5.2

In the analysis of examples 5.1 and 5.2 and the corresponding result tables, we can observe the
robustness of the constructed difference scheme, even for small values of the perturbation parameter
ϵ. Note that the results presented in tables 1 and 2 already suggest ϵ-uniform convergence of second
order.

The presented method can be used in order to construct schemes of convergence order greater than
two. In constructing such schemes, the corresponding analysis should not be more difficult that
the analysis for our constructed difference scheme. In the case of constructing schemes for solving
a two-dimensional singularly perturbed boundary value problem, if one does not take care that
functions of two variables do not appear during the scheme construction, the analysis should not be
substantially more difficult then for our constructed scheme. In such a case it would be enough to
separate the expressions with the same variables and the analysis is reduced to the previously done
one-dimensional analysis.
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