Physical Interpretation of PP-waves With Axial Torsion

Elvis Baraković

Jointly with Vedad Pasic.

University of Tuzla Department of Mathematics Bosnia and Herzegovina

July 16, 2015

14th Marcel Grossmann Meeting – MG14, University of Rome "La Sapienza".

(日) (部) (注) (注) (注)

æ

A spacetime with pp-metric and torsion

$$T := *A \tag{1}$$

where A is a real vector field defined by $A = k(\varphi)I$. (V. Pasic and E. Barakovic: "Torsion wave solutions in Yang-Mielke theory of gravity", Advances in High Energy Physics, accepted for publication.)

The torsion T is purely axial and the connection Γ is metric compatible.

The remarkable property: the curvature of a generalised pp-wave is a sum of the curvature of the underlying classical pp-space

$$-\frac{1}{2}(I \wedge \{\nabla\}) \otimes (I \wedge \{\nabla\})f \tag{2}$$

and the curvature

$$\frac{1}{4}k(\varphi)^{2}\operatorname{Re}\left((I \wedge m) \otimes (I \wedge \bar{m})\right) \mp \frac{1}{2}k'(\varphi)\operatorname{Im}\left((I \wedge m) \otimes (I \wedge \bar{m})\right) (3)$$

generated by a axial torsion wave traveling over the pp-space. Ricci curvature is

$$Ric = \frac{1}{2} \left(f_{11} + f_{22} - k^2 \right) (I \otimes I).$$
(4)

・ロト ・母 ・ ・ キャ ・ キャ ・ ちゃくら くう くう

and scalar curvature \mathcal{R} is equal to zero.

Our goal: to compare the generalised pp-waves with purely axial torsion to the solutions of the classical models describing the interaction of gravitational and massless neutrino fields (EW theory).

Our torsion and torsion generated curvature can be interpreted as waves traveling at speed of light.

The underlying classical pp-space of parallel Ricci curvature can then be viewed as the gravitational imprint created by a wave of some massless matter field.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

We deal with the complexified curvature $\mathfrak{R} := r(l \wedge m) \otimes (l \wedge \overline{m})$, where $r := \frac{1}{4}k^2 - \frac{i}{2}k'$, hence $R_T = Re(\mathfrak{R})$. The curvature \mathfrak{R} is polarized, i.e. ${}^*\mathfrak{R} = \mathfrak{R}^* = \pm \mathfrak{i}\mathfrak{R}$, and it wan be written as

$$\Re_{\alpha\beta\gamma\delta} = \sigma_{\alpha\beta\mathsf{ab}}\,\omega^{\mathsf{abcd}}\,\overline{\sigma}_{\gamma\delta\mathsf{cd}} \tag{5}$$

Resolving (5) with respect to ω yields

$$\omega = \xi \otimes \xi \otimes \xi \otimes \xi$$

where

$$\xi := r^{1/4} \chi \tag{6}$$

・ロト ・母 ・ ・ キョ ・ ・ モー・ うへで

and $\chi^{a} = (1, 0).$

The spinor (6) satisfies Weyl's (the massless Dirac) equation.

We consider the action as

$$S_{EW} := 2i \int \left(\xi^a \sigma^{\mu}_{\ a\dot{b}} \left(\{\nabla\}_{\mu} \overline{\xi}^{\dot{b}} \right) - \left(\{\nabla\}_{\mu} \xi^a \right) \sigma^{\mu}_{\ a\dot{b}} \overline{\xi}^{\dot{b}} \right) + K \int \mathcal{R}.$$
(7)

The explicit representation of the Einstein-Weyl field equations is

$$\frac{i}{2} \left[\sigma^{\nu}{}_{ab} \left(\overline{\xi}^{\dot{b}} \{ \nabla \}^{\mu} \xi^{a} - \xi^{a} \{ \nabla \}^{\mu} \overline{\xi}^{\dot{b}} \right) + \sigma^{\mu}{}_{ab} \left(\overline{\xi}^{\dot{b}} \{ \nabla \}^{\nu} \xi^{a} - \xi^{a} \{ \nabla \}^{\nu} \overline{\xi}^{\dot{b}} \right) \right]
+ i \left(\xi^{a} \sigma^{\eta}{}_{a\dot{b}} \left(\{ \nabla \}_{\eta} \overline{\xi}^{\dot{b}} \right) g^{\mu\nu} - \left(\{ \nabla \}_{\eta} \xi^{a} \right) \sigma^{\eta}{}_{a\dot{b}} \overline{\xi}^{\dot{b}} g^{\mu\nu} \right) - KRic^{\mu\nu} + \frac{K}{2} \mathcal{R}g^{\mu\nu} = 0, \quad (8)
\sigma^{\mu}{}_{a\dot{b}} \{ \nabla \}_{\mu} \xi^{a} = 0. \quad (9)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The system (8), (9) has the solutions in the form of pp-waves.

Comparison of metric-affine and Einstein-Weyl solutions

We wish to present a class of explicit solutions of EW field equations where the metric g is in the form of a pp-metric and the spinor $\xi = r^{1/4}\xi$.

The condition that a pp-wave needs to satisfy to be a solution of Einstein-Weyl is

$$f_{11} + f_{22} = k(x^3)^2 + \frac{2i}{\kappa} \left((r^{1/4})' \ \overline{r^{1/4}} - r^{1/4} \ (\overline{r^{1/4}})' \right), \tag{10}$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

The differences:

MA case: the generalised pp-wave solutions have parallel {*Ric*} curvature

EW case: the pp-wave type solutions do not necessarily have parallel Ricci curvature.

MA case: Laplacian of f can be any constant, EW case: Laplacian of f required to be a particular constant. The generalised pp-waves of parallel Ricci curvature are very similar to pp-type solutions of the Einstein–Weyl model.

The generalised pp-waves represent a metric-affine model for the massless neutrino.