
Vedad Pašić, Nermin Okičić

DIFERENCIJALNE JEDNAČINE SA

PERIODIČNIM KOEFICIJENTIMA∗

DIFFERENTIAL EQUATIONS WITH

PERIODIC COEFFICIENTS

ABSTRACT

The aim of this paper is to explore in some detail the second order linear
ordinary differential equation with real or complex periodic coefficients, also
known as the Hill’s equation, with some emphasis on stability and instability
intervals and explore two related self-adjoint eigenvalue problems leading to
the two final results which enable us to practically solve problems of this type.

ABSTRAKT

Cilj ovog rada je da detaljno istraži linearnu običnu diferencijalnu jednačinu
drugog reda sa realnim ili kompleksnim koeficijentima, takodjer znanu kao
Hill-ova jednačina, posebno posvećujući pažnju intervalima stabilnosti i ne-
stabilnosti i da istraži dva povezana problema svojstvenih vrijednosti vodeći
nas do dva finalna rezultata koji nas osposobljavaju da u praksi rješavamo
probleme ovog tipa.

1 Hill’s equation theory

1.1 Floquet’s theory

Let us firstly consider the known general second order differential equation

a0(x)y
′′(x) + a1(x)y

′(x) + a2(x)y(x) = 0 (1.1)
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where the coefficients as(x) (s = 0, 1, 2) are complex-valued, piecewise con-
tinuous and periodic, all with period a, where a is a non-zero real constant.
It is hence clear that if ψ(x) is a solution of (1.1), then so is ψ(x+ a).

Theorem 1.1 There exist a non-zero constant ρ and a non-trivial solution
ψ(x) of ( 1.1) such that

ψ(x+ a) = ρψ(x) (1.2)

holds. 1

Now let us extend this in the following theorem.

Theorem 1.2 There are linearly independent solutions ψ1(x) and ψ2(x) of
(1.1) such that either

ψ1(x) = em1xp1(x), ψ2(x) = em2xp2(x),

where m1 and m2 are constants, not always distinct, and p1(x) and p2(x)
are periodic with period a; or

ψ1(x) = emxp1(x), ψ2(x) = emx (xp1(x) + p2(x)) ,

where m is a constant and p1(x) and p2(x) are periodic with period a. 2

The first part of the theorem occurs when there are two linearly independent
solutions of (1.1), such that (1.2) holds with either different or same values
of ρ, while the second part occurs when there is only one such solution. The
solutions ρ1 and ρ2, whether distinct or not, are called the characteristic
multipliers of (1.1), and m1 and m2 from Theorem (1.2) are called the char-
acteristic exponents of (1.1). The above results and their proofs are known
as the Floquet theory after G. Floquet.

1.2 Hill’s equation

Now we finally come to the Hill’s equation, and in this part we explore its
properties. The name of Hill’s equation is given to the equation

{P (x)y′(x)}′ +Q(x)y(x) = 0 (1.3)

where P (x) and Q(x) are real valued and have period a. We also assume that
P (x) is continuous and nowhere zero and that P ′(x) and Q(x) are piecewise

1 Proof of this theorem can be found in Eastham[3], section 1.1
2 Proof of this theorem can be found in Eastham[3], section 1.1
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continuous. Clearly, this equation is a special case of (1.1) and it is named
after G.W. Hill.
We now again look at the two solutions ψ1(x) and ψ2(x) from theorem (1.2),
but now we use them on equation (1.3). Let φ1(x) and φ2(x) be the linearly
independent solutions of (1.1), which satisfy the conditions

φ1(0) = 1, φ1
′(0) = 0; φ2(0) = 0, φ2

′(0) = 1. (1.4)

By the proof of Theorem 1.1, we have that the characteristic multipliers ρ1
and ρ2 in the case of Hill’s equation are solutions of the quadratic equation

ρ2 − {φ1(a) + φ2
′(a)}ρ+ 1 = 0, (1.5)

and hence we have that the characteristic multipliers satisfy

ρ1ρ2 = 1. (1.6)

The solutions φ1(x) and φ2(x) of (1.3) which satisfy the boundary conditions
(1.4) are real valued, by definition of Hill’s equation.

Definition 1.3 The real number D defined by

D = φ1(a) + φ2
′(a) (1.7)

is called the discriminant of (1.3).

There are five cases we should consider in finding ψ1(x) and ψ2(x).

1. D > 2. Then

ψ1(x) = emxp1(x), ψ2(x) = e−mxp2(x),

where p1(x) and p2(x) have period a and m is a non-zero real number,
by the first part of Theorem 1.2 3.

2. D < −2. Here the situation is the same as in the first case, only m
must be replaced by m+ πi

a
.

3. −2 < D < 2. By (1.5) ρ1 and ρ2 are non-real and distinct. Hence by
(1.6), and by the fact they are complex conjugates, there exists a real
number α with 0 < aα < π such that

eiaα = ρ1, e−iaα = ρ2

Then, by Theorem 1.2

ψ1(x) = eiαxp1(x), ψ2(x) = e−iαxp2(x)

where p1(x) and p2(x) have period a.

3 For detailed proofs of all these five results, refer to Eastham [3], Section 1.2
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4. D = 2. Now we have to decide which part of (1.2) we must apply,
because ρ1 = ρ2 = 1, so we have to consider two cases.

(a) φ2(a) = φ′
1(a) = 0. A simple calculation and a manipulation of

the Wronskian 4 of the matrix determined by φ1 and φ2, yields

ψ1(x) = p1(x), ψ2(x) = p2(x)

where p1(x) and p2(x) have period a. All solutions of (1.3) have
period a in this case.

(b) φ2(a) and φ
′
1(a) are not both zero. Here

ψ1(x) = p1(x), ψ2(x) = xp1(x) + p2(x)

where p1(x) and p2(x) have period a.

5. D = −2. Now ρ1 = ρ2 = −1, and again as in the previous part we
have to consider two cases, depending on the part of Theorem (1.2).

(a) φ2(a) = φ′
1(a) = 0. Doing similar manipulations to the previous

part, we get that

ψ1(x) = e
πix

a p1(x), ψ2(x) = e
πix

a p2(x)

where p1(x) and p2(x) have period a. In this case all solutions of
(1.3) satisfy

ψ(x+ a) = −ψ(x)

Let us at this point also note that all functions that satisfy the
above conditions are said to be semi-periodic with semi-period a.

(b) φ2(a) and φ
′
1(a) are not both zero. Here

ψ1(x) = P1(x), ψ2(x) = xP1(x) + P2(x)

where Pk(x) = e
πix

a pk(x), (k = 1, 2). So obviously, as above, Pk(x)
are also semi-periodic.

6. D non real. This is a special case, where D is still defined like in (1.7),
only now takes complex values. In this case ρ1 and ρ2 are non-real
and distinct, and they cannot have modulus unity, because then D

4For the Liouville’s formula for the Wronskian of two solutions of (1.1), refer to East-
ham [2], section 2.3, pages 32-4
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would not have complex value, so there is a non-real number m with
the property that re m 6= 0, such that

eam = ρ1 e−am = ρ2

So we obtain that

ψ1(x) = emxp1(x), ψ2(x) = e−mxp2(x).

1.3 Boundedness and periodicity of solutions

Theorem 1.4 1. If |D| > 2, all non-trivial solutions of (1.3) are un-
bounded in (−∞,∞).

2. If |D| < 2, all solutions of (1.3) are bounded in (−∞,∞).

This result clearly follows from the cases 1-5 of the value of the discriminant
in section 1.2.

Definition 1.5 The equation (1.3) is said to be

• unstable if all non-trivial solutions are unbounded in (−∞,∞).

• conditionally stable if there is a non-trivial solution which is bounded
in (−∞,∞).

• stable if all solutions are bounded in (−∞,∞).

By Theorem 1.4, (1.3) is unstable if |D| > 2, and stable if |D| < 2. Periodic
and semi-periodic functions are bounded in (−∞,∞), so from cases 4 and 5
from section 1.2, we get the following theorem.

Theorem 1.6 The equation (1.3) has non-trivial solutions with period a if
and only if D = 2, and with semi-period a if and only if D = −2. Moreover,
all solutions of (1.3) have period a or semi-period a if and only if φ2(a) =
φ1

′(a) = 0.
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2 Stability and Instability Intervals

We start by extending the definitions of the previous introductory section to
a more specific case.

2.1 Extending the previous information

We are still looking at Hill’s equation (1.3), but in a slightly more particular
form, where Q(x) now has a parameter λ, such that

Q(x) = λs(x)− q(x)

Here s(x) and q(x) are piecewise continuous with period a and s(x) is bounded
from below in the sense that there exists a constant s > 0, such that s(x) ≥ s.
Also, if we substitute P (x) with p(x), (1.3) now becomes

((p(x)y′(x))
′
+ (λs(x)− q(x)) y(x) = 0 (2.1)

In general, if the functions in the differential equation not only depend upon
the variable x and y(x), but also upon a real or complex parameter λ, then
the functions φi(x) which form the solution will also depend upon λ. So in
our case, we write φ1(x, λ) and φ2(x, λ) for the solutions of our equation (2.1)
which satisfy the initial conditions (1.4) 5. So now we define, corresponding
to Definition 1.7 the discriminant

D(λ) = φ1(a, λ) + φ2
′(a, λ) (2.2)

Since for all λ, φ1(x, λ) and φ2(x, λ) and their derivatives with respect to x
are analytic functions for fixed x, then by Definition 2.2 D(λ) is an analytic
function of λ. Since D(λ) is a continuous function of λ, the values of λ for
which |D(λ)| < 2 form an open set on the real λ− axis. Since this set can
be represented as a union of a countable collection of disjoint open intervals,
then based on the results of Theorem 1.4, part (2), we can see that (2.1)
is stable when λ is in these intervals. Similarly, when λ is in the intervals
in which |D(λ)| > 2, then (2.1) is unstable. Hence, we can formulate the
following definition.

Definition 2.1 • The above described intervals which form the set of
values of λ for which |D(λ)| < 2 are called the stability intervals of
(2.1).

5 Refer to Eastham [2], section 1.7, page 17
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• The intervals which form the set of values of λ for which |D(λ)| > 2
are called the instability intervals of (2.1).

• The intervals which are formed by the closures of the stability intervals
are called conditional stability intervals of (2.1) 6.

Note that if λ is complex, then (2.1) has always unstable solutions, and at
the endpoints of these intervals the solutions of (2.1) are in general unstable
7.

2.2 The eigenvalue problems

We are going to be dealing here with two eigenvalue problems related to (2.1)
and the interval [0, a], and λ is considered as an eigenvalue parameter. Let
us now describe the two self-adjoint eigenvalues problems in detail.

1. The periodic eigenvalue problem. This problem consists of the Hill
equation (2.1), which is taken to hold in [0, a], and we also have the
periodic boundary conditions

y(a) = y(0), y′(a) = y′(0) (2.3)

This problem is a self-adjoint problem. We also know that the eigenval-
ues of a self-adjoint eigenvalue problem are real, so we have no problem
with the complexity of λ 8. So, we deduce that the eigenvalues form a
countable set with no finite limit points, and we do this in the way of
constructing the Green’s function and defining a compact symmetric
linear operator in an inner-product space. The inner - product space
we are dealing with here is that of continuous functions on [0, a] with
the inner product

< f1, f2 >=

∫ a

0

f1(x)f2(x)s(x)dx

We shall denote the eigenfunctions by ψn(x) and the eigenvalues by λn
where n = 0, 1, . . . and the sequence of eigenvalues is non-decreasing
and λn → ∞ as n → ∞. We choose ψn(x) to be real valued and to
form an orthonormal set over [0, a] with weight function s(x). So we
have

∫ a

0

ψm(x)ψn(x)s(x)dx =

{

1 if m = n
0 if m 6= n

(2.4)

6 These occur when |D(λ)| ≤ 2
7 Refer to Magnus [5], section 2.1, page 12
8 Refer to Eastham [2], Chapters 5.1-5.3, pages 84-91 for more information on self-

adjoint problems
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By (2.3), we can extend ψn(x) to the whole (−∞,∞) as continuously
differentiable functions with period a. Hence the λn are the values of
λ for which (2.1) has a non-trivial solution with period a.

2. The semi-periodic eigenvalue problem. This problem consists of the
Hill equation (2.1), which is taken to hold in [0, a], and we also have
the semi-periodic boundary conditions

y(a) = −y(0), y′(a) = −y′(0) (2.5)

It is also a self-adjoint problem, but this time we shall denote the
eigenfunctions by ξn(x) and the eigenvalues by µn(n = 0, 1, . . .). Again
the sequence of eigenvalues is non-increasing and µn → ∞ as n → ∞.
And as before, but now by (2.5) we can extend ξn(x) to the whole
(−∞,∞) as continuously differentiable functions with semi-period a.

From case (4) from the section 1.2 in the case of periodic eigenvalue problem
we can deduce that λn are the zeros of the function D(λ) − 2 and that a
given eigenvalue λn is a double eigenvalue if and only if

φ2(a, λn) = φ′
1(a, λn) = 0

A similar result follows from case (5) from section 1.2 for µn, only this time
the eigenvalues are the zeros of the function D(λ) + 2.
From now on, let F denote the set of all complex-valued functions f(x) which
are continuous in [0, a] and have a piecewise continuous derivative in [0, a].
Let us now define the Dirichlet integral.

Definition 2.2 Let f(x) and g(x) be in F . Then the Dirichlet integral
J(f, g) is defined to be

J(f, g) =

∫ a

0

(

p(x)f ′(x)g′(x) + q(x)f(x)g(x)
)

dx (2.6)

If f(x) and g(x) satisfy the boundary conditions (2.3) and if g(x) = ψn(x),
we get that

J(f, ψn) = λnfn (2.7)

where fn denotes the Fourier coefficient
∫ a

0
f(x)ψn(x)s(x)dx, where we have

used the fact that ψn(x) satisfies (2.1) with λ = λn. From equation (2.4) in
the periodic eigenvalue problem, we can now deduce that in this case

J(ψm, ψn) =

{

λn if m = n
0 if m 6= n

(2.8)
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Theorem 2.3 Let f(x) be in F and let it satisfy the boundary conditions
(2.3). Then with the Fourier coefficients fn defined as above, we have that

∞
∑

n=0

λn|fn|
2 ≤ J(f, f)9. (2.9)

Theorem 2.4 Let λ1,n(n ≥ 0) denote the eigenvalues in the periodic problem
over [0, a]. In the problem we replace p(x), q(x) and s(x) by p1(x), q1(x) and
s1(x) respectively, where

p1(x) ≥ p(x), q1(x) ≥ q(x), s1(x) ≤ s(x) (2.10)

Then
(i) if s1(x) = s(x) a.e. we have λ1,n ≥ λn for all n;
(ii) otherwise, we have λ1,n ≥ λn provided n is such that λn ≥ 0.

Proof. Let ψ1,n denote the eigenfunction corresponding to the eigenvalue
λ1,n and let J1(f, g) denote the Dirichlet integral (2.6) but with p(x) and
q(x) replaced by p1(x) and q1(x). By (2.10) we have that

J1(f, f) ≥ J(f, f) (2.11)

Here we prove the theorem for the case 0. So now we consider f(x) = ψ1,0(x).
Then by theorem (2.4) we have that

λ1,0 = J1(ψ1,0, ψ1,0) ≥ J(ψ1,0, ψ1,0) ≥ λ0

∫ a

0

ψ2

1,0(x)s(x)dx (2.12)

Now by (2.10) we get

∫ a

0

ψ2

1,0(x)s(x)dx ≥

∫ a

0

ψ2

1,0(x)s1(x)dx = 1

Here equality holds in the case (i) of the theorem, while in the second part of
the theorem we have strict inequality. Hence, λ1,0 ≥ λ0 in the first case, but
it only gives λ1,0 ≥ λ0 in the second case if λ0 ≥ 0. This proves the theorem
for n = 0. 10.

Example 2.5 p(x) = s(x) = 1, q(x) = 0. This is an example where (2.1) is
reduced to

y′′(x) + λy(x) = 0,

9For proof of this theorem, please refer to [3], section 2.2, page 22
10 For the rest of the proof please see [3], section 2.2, pages 23-25
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a well - known equation. We can show that we have λ0 = 0, and for m ≥ 0

λ2m+1 = λ2m+2 = 4 (m+ 1)2
π2

a2

µ2m = µ2m+1 = (2m+ 1)2
π2

a2

Example 2.6 p(x) = 1, q(x) = 0

s(x) =

{

1 for
(

−1

2
a < x ≤ 0

)

9 for
(

0 < x ≤ −1

2
a
)

The results for the periodic eigenvalue problem are

λ4m+1 = 4

(

mπ +
1

2
α

)2

/a2, λ4m+2 = 4

(

(m+ 1)π +
1

2
α

)2

/a2,

λ4m+3 = λ4m+4 = 4(m+ 1)2π2/a2

where α = cos−1
(

7

8

)

and 0 < α < 1

2
π.

On the other hand, the solution for the semi-periodic eigenvalues problem is

µ4m = 4

(

mπ +
1

2
β

)2

/a2, µ4m+1 = 4

(

mπ +
1

2
γ

)2

/a2,

µ4m+2 = 4

(

(m+ 1)π −
1

2
γ

)2

/a2, µ4m+3 = 4

(

(m+ 1)π −
1

2
β

)2

/a2,

where β = cos−1

(

1+
√
33

16

)

and γ = cos−1

(

1−
√
33

16

)

and 0 < β < γ < π.
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