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1. Introduction 
 
 
 

 In the past, mathematics has been largely concerned with sets and functions to 
which the methods of classical calculus can be applied. Sets of functions that are not 
sufficiently smooth or regular tended to be ignored. In recent years this attitude has 
changed. It has been realised that a great deal can be said about the mathematics of 
non-smooth sets. Fractal geometry provides a general framework for the study of such 
irregular sets. 
 
 Although people hear about “fractals” all the time, still most do not 
understand what they are and what they represent. Many attempts have been made to 
define fractals in a purely mathematical sense, but such definitions have often proved 
to be unsatisfactory in a general context. Still, fractal geometry provides a number of 
techniques for dealing with fractals, and this essay covers only a small part of it, i.e. it 
deals only with the notion of fractal dimension.  
 
 As I already mentioned, methods of classical geometry and calculus are 
unsuited to studying fractals. The main tool of fractal geometry is dimension in its 
many forms. We are all familiar with the idea that a curve is a 1 – dimensional object, 
and a surface is 2 – dimensional. Let us now consider the following set: 
 
 Let E0 be a line segment of unit length. The set E1 consists of the four 
segments obtained by removing the middle third of E0 and replacing it by the other 
two sides of the equilateral triangle based on the removed segment. We construct E2 
by repeating the same procedure on each of the segments in E1, and so on. Thus Ek  
comes from replacing the middle third of each straight line segment of Ek-1 by the 
other two sides of the equilateral triangle. As k tends to infinity, the sequence of 
polygonal curves Ek  approaches a limiting curve F, called the Von Koch curve (Figure 
1.1).  
 
 The following argument gives a rather crude interpretation of what the 
dimension of this set is, indicating how it reflects scaling properties and self – 
similarity. A Figure 1.1 indicates, the Von Koch curve is made up of four copies of 
itself scaled by a factor 1/3, and has dimension d = –ln 4/ln (1/3) = ln 4/ln 3 = 1.262. 
In general, a set made up of m copies of itself scaled by a factor r might be thought of 
as having dimension d = –ln m/ln r. The number obtained in this way is usually 
referred to as the similarity dimension of the set 1. 
 
 Unfortunately, similarity dimension only makes sense for a small number of 
self similar sets, and cannot be applied to a vast number of sets which are considered 
to be very important. Nevertheless, there are other definitions of dimension that are 
much more widely applicable. For example, Hausdorff dimension and the Minkowski 
dimension may be defined for any sets, and it may be shown that they equal the 
similarity dimension (see latter sections). 
 
                                                 
1 If you would like to visualise the forming of the von Koch curve and some other fractals, look  

http://www.wmin.ac.uk/~storyh/fractal/frac.html 
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FIGURE 1.1 Construction of the Von Koch curve F. d(F)= ln 4/ln 3 = 1.262 2 

 
 As mentioned above, it is not very easy to rigorously define a fractal. The 
name itself was given to highly irregular sets by Benoit Mandelbrot in his 
fundamental essay in 1975. Mandelbrot defined a fractal to be a set with Hausdorff 
dimension strictly greater than its topological dimension (the topological dimension 
of a set is an integer). Although this essay covers just a small part of fractal geometry, 
it would be useful if we define what we mean when we refer to a set F as a fractal. 
Falconer3 states the following non - rigorous definition : We consider a set F in 
Euclidean space to be fractal if it has all or most of the following properties: 

 
(i) F has a fine structure, i.e. detail on arbitrarily small scales 
(ii) F is too irregular to be described in traditional geometrical language, both 
locally and globally. 
(iii) Often F has some form of self – similarity, perhaps approximate or 
statistical. 
(iv) Usually, the “fractal dimension” of F (defined in some way) is greater 
than its topological dimension. 
(v) In many cases of interest F has a very simple, perhaps recursive definition. 

 (vi) Often F has a natural appearance. 
 
Now I embark on describing in more detail what the fractal dimension actually is. 

                                                 
2 Look http://hyperion.advanced.org/3493/noframes/fractal.html for more simple examples & picutures 
3 In the book “Techniques in Fractal Geometry”, page XI 
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2. Hausdorff measure and dimension 
 

 

 
 

Felix Hausdorff (1869 – 1942) 4 
 
 Of the wide variety of ‘fractal dimensions’, the Hausdorff definition is 
probably the oldest, and it has the advantage of being defined for any set. It is also 
mathematically convenient, because it uses the notion of measures, which are 
relatively easy to manipulate. For the understanding of fractal dimension and fractal 
geometry in general, the understanding of Hausdorff dimension is very important. 
 
 Hausdorff measure 
 
 Recall that if U is any non-empty subset of n – dimensional Euclidean space, 
!n, the diameter  of  U is defined as |U| = sup{ | x – y | : x, y ∈  U}. If {Ui} is a 
countable ( or finite )  collection  of  sets  of  diameter  at most ε  that  cover F,  i.e.  
F ⊂  ∪ ∞

i=1 Ui  with 0 < |Ui| ≤ ε for each i, we say that {Ui} is a ε - cover of F. 
 
 Suppose that F is a subset of !n and s is a non – negative number. For any ε>0 
we define 
 

Hs
ε(F) = inf {∑i |Ui|s : {Ui} is a ε - cover of F}. 

 
 We write 

 
We call Hs(F) the s-dimensional Hausdorff measure of F. 
 
Hausdorff measure generalises the ideas of length, area, volume, etc. It may be 

shown that, for subsets of !n, n-dimensional Hausdorff measure is, to within a 
constant multiple, just n-dimensional Lebesgue measure, i.e. the n-dimensional 
volume. So, Hn(F) = cn voln (F), where the constant cn = π1/2 n / 2n (½ n)! is the 
volume of an n-dimensional ball of diameter 1. So we have that H0(F) is the number 
of points in F; H1(F) gives the length of a smooth curve F; H2(F)= ¼ π  x area(F) if F 
is a smooth surface and Hm(F)=cm x volm(F) if F is a smooth m-dimensional 
submanifold of  !n (i.e. m-dimensional surface in the classical sense). 
 
 

                                                 
4 For his biography and research, look http://history.math.csusb.edu/Mathematicians/Hausdorff.html 
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 The following is called the scaling property of the Hausdorff measure: 
 
 If F⊂  !n and λ>0 then 

 
Hs(λF) = λs Hs(F) 

 
where λF = {λx : x ∈  F}, i.e. the set F scaled by a factor λ 5. 
 
 
Hausdorff dimension 
 
 The Hausdorff dimension (sometimes referred to as Hausdorff – Besicovich 
dimension) is defined formally in the following way: 
 

dimH F = inf{s: Hs(F) = 0} = sup {s: Hs(F) = ∞} 
 

so that Hs(F) = ∞ if s < dimH F and Hs(F) = 0 if s > dimH F. 
 
 What this means is that there is a critical value of s at which Hs(F) ‘jumps’ 
from  ∞ to 0, and this value of s is the Hausdorff dimension  of F.  
 

There are a few properties of this dimension which are worth mentioning6: 
 

 (i) If F⊂ !n is open, then dimH F = n, since F contains a ball of positive n- 
dimensional volume; 
(ii) If F is continuously differentiable m – dimensional submanifold (i.e. m-
dimensional surface) of !n then dimH F = m; 
(iii) If E ⊂  F then dimH E ≤ dimH F; 
(iv) If F1, F2, ... is a (countable) sequence of sets, then dimH ∪ ∞

i=1 Fi = 
sup1≤i<∞ { dimH Fi};  
(v) If F is countable then dimH F = 0. 

 
 Here follow a few simple examples to illustrate how the Hausdorff dimension 
can be calculated. 
 
 
  
 
 
 
 
 
 
 
 
                                                 
5 Proof of this fact can be found in “Fractal Geometry”, page 27 
6 According to Falconer, “Fractal geometry”, page 29. 
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Example 2.1  

 
Let F = { 0 }  ⊂   !n. It is obvious that H0(F)=1 and H1(F)=0, so dimH F = 0. 

Of course, this was obvious from the beginning, since  F is countable, and by property 
(v), all countable sets F have dimH F = 0. 

 
 
 
Example 2.2 
 
Let F = [0, 1] ⊂   !. From familiar properties of length and area, H0(F) = 

number of points in F = ∞, 0 < H1(F) = length(F) = 1 and H2(F) = area(F) × ¼π = 0. 
So we have 
 

dimH F = inf{s: Hs(F) = 0}=sup {s: Hs(F) = ∞} = 1,  
 

with Hs(F) = ∞  for s < 1 and Hs(F) = 0 for s > 1. This result is also hardly surprising, 
since by the property (ii) of the Haudorff dimension, the Hausdorff dimension of F is 
in this case 1. 
 
  
 
 
 Example 2.3 
 
 Let F = { x : x1 ∈  [0, 1], x2 = 0}  ⊂   !2. Since this is obviously just the line on 
the x1 axis of length 1, H0(F) = number of points in F = ∞, 0 < H1(F) = length(F) = 1 
and H2(F) = area(F) × ¼π = 0, so the dimH F = 1. Of course, this too was obvious 
from the start, since again by the property (ii) of the Hausdorff dimension, F has 
Hausdorff dimension 1. 
 
 
 

Example 2.4 
 
 This is the only not completely trivial example that we are going to consider in 
this section7.  
 

 
 Let F be the middle third Cantor set (see Figure 2.1).If s=ln 2 / ln 3 = 
0.6309...  then dimH F = s and ½ ≤ Hs(F) ≤ 1. 
 
 
 
 
 
                                                 
7 Taken from Falconers “Fractal Geometry”, page 31. 
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FIGURE 2.1 Construction of the middle third Cantor set F . 
 
 
 Heuristic calculation. The Cantor set F splits into a left part FL = F ∩ [0, 1/3] 
and a right part FR = F ∩ [ 2/3, 1]. Clearly both parts are geometrically similar to F 
but scaled by a ratio 1/3, and F = FL  ∪  FR with this union disjoint. Thus for any s 
 

Hs(F) = Hs(FL) + Hs(FR) = (1/3)s Hs(F) + (1/3)s Hs(F) 
 

by the scaling property of Haudorff measures. Assuming that at the critical value s = 
dimHF we have 0 < Hs(F) < ∞ ( a big assumption, but one that can be justified) we 
may divide by Hs(F) to get 1 = 2 (1/3)s or s = ln 2 / ln 3. 
  
 Rigorous calculation. .........8 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
8 For a rigorous proof of this fact, look up “Fractal Geometry”, page 32. 
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3. Minkowski dimension 

 
(also called box-counting or Bouligand-Minkowski dimension) 

 

 
 

Hermann Minkowski (1864 – 1909) 9 
 

 
 In the last part we have seen that the calculation of Hausdorff measures can be 
a little involved, even for simple sets. So we are interested in finding a different 
definition of dimension which would be more applicable in calculating the dimension 
of a set F. But there are no hard and fast rules for deciding whether a quantity may 
reasonably be regarded as a dimension. The factors that determine the acceptability of 
a definition of a dimension are recognised largely by experience and intuition.  
 
 It should not be assumed that different definitions of dimension give the same 
value of a dimension for all sets, even for those that are considered ‘nice’. So, the 
notion of a ‘dimension’ of a set should be separated from the notion of a ‘definition of 
a dimension’. In this part of the essay, we shall introduce another definition of a 
dimension, the Minkowski or the box-counting dimension (for simplicity, I shall only 
use the term ‘Minkowski dimension’ from now on). 
 
 The Minkowski dimension is one of the most widely used dimensions. It is 
reasonably easy to calculate, and the notion of ‘measures’ is avoided. There are 
several versions of this definition, and the example calculations will be based on just 
one of them. However, it would be useful if some other versions are mentioned, so 
here follows the first one10: 
 
 Let F be any non-empty bounded set of  !n . The lower and upper Minkowski 
dimensions of F are given by 
 

 

 
 

                                                 
9 For his biography and reasearch, look http://history.math.csusb.edu/Mathematicians/Minkowski.html 
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and the Minkowski dimension of F by 
 

 
(if this limit exists), where Nε(F) is any of the following: 
 
 (i)  the smallest number of closed balls of radius ε that cover F; 
 (ii) the smallest number of cubes of side ε that cover F (box-counting); 
 (iii) the number of ε-mesh cubes that intersect F; 
 (iv) the smallest number of sets of diameter at most ε  that cover F; 
 (v) the largest number of disjoint balls of radius  ε  with centres in F. 
 
 This is a very useful definition, but not very ‘friendly’ when it comes to 
calculating the actual Minkowski dimension. However, there is an equivalent 
definition of the Minkowski dimension that is of rather different form. Before we 
actually give it, let us firstly recall that the ε - neighbourhood (or the ε - parallel 
body) Fε  of F is  
 

Fε = { x ∈  !n : dist (x, F)< ε }, 
 

where dist (x, F) is the Euclidean distance in !n, i.e.  
 

 
So the ε-neighbourhood Fε  is the set of points within distance ε of F. It sometimes 
referred to as the Minkowski sausage. 
 
So now, we can formulate the following proposition: 
 
 If F is a subset of !n, then 
 

 

 
where Fε is the ε-neighbourhood of F, and voln (Fε) is its n-dimensional volume. 
 

                                                                                                                                            
10 According to Falconer, “Fractal Geometry”, page 38. 
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Proof: ..........11 
 
There is a very important relation between the Minkowski and Hausdorff dimension. 
If F can be covered by Nε(F) sets of diameter ε, then, from the scaling property of the 
Hausdorff measure, 
 

Hs
ε(F) ≤ Nε(F) ε s. 

 
 If 1< Hs(F) = limε→0 Hs

ε(F) then  ln Nε(F) + s ln ε > 0 if ε is sufficiently small. 
Thus  s ≤ limε→0 ln Nε(F) / - ln ε so 
 

 
for any F ⊂  !n. We do not generally get equality here, and there are plenty of 
examples where this inequality is strict. 
 
 Now let us look at a couple of examples 12 illustrating how the Minkowski 
dimension is calculated. Note that in general, the second version of the Minkowski 
dimension will be used. 
 
 
 Example 3.1 Let  F = { x ∈  !2 : | x | = 1} ⊂  !2. Let us first calculate the ε - 
neighbourhood of F. Since F is obviously a circle of radius 1, centred at  0, the ε - 
neighbourhood of F is the ‘ring’ around the circle F, where all the points in Fε satisfy 
 

Fε = { y ∈  !2  : dist(x,y) < ε, for x ∈  F}. 
 

 The area of this Fε is equal to the difference between the areas of the circles 
with radii 1+ ε and 1 - ε, centred at the origin 0, and this area is the 2-dimensional 
volume of the ε - neighbourhood, vol2 (Fε). 
 

vol2 (Fε) = π (1 +  ε)2 + π (1 -  ε)2 = 4πε 
 

 So the Minkowski dimension of F is then 
 

 
 So this F has dimension 1, which was expected, since it is a curve. 
 
 
                                                 
11 The proof can be found in “Fractal Geometry”, page 42. 
12 Thanks to Professor D.G.Vassiliev for his invaluable guidance and help in this section.  
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 Example 3.2  Let F = { x ∈  !2 : | x | ≤ 1} ⊂  !2 . F is a disk of radius 1 centred 
at the origin. Its ε - neighbourhood is also a disk but with radius 1+ε centred at the 
origin. The 2-dimensional volume of F is therefore 
 

vol2 (Fε) = π (1 +  ε)2 
 

 The Minkowski dimension of F is therefore 

 
 So the dimension of F is 2, which was expected, since F is a disk. 
 
  
 Example 3.3 13 Let F = { 1/n } ⊂  ! (n=1, 2, 3, ...). We get the  ε - 
neighbourhood of F in this case by putting a small interval [1/k - ε, 1/k + ε] around 
every element 1/k of F.  After  a  while,  for n = N ∈  ",  the intervals  [1/(N+1) - ε, 
1/(N+1) + ε]  
and [1/N - ε, 1/N + ε] will start to overlap, so we will get one interval [-ε, 1/N + ε], 
while for n<N, the intervals remain disjoint and with length 2ε.  So the 1-dimensional 
volume (length) of the ε - neighbourhood  of  F is 
 

 
  
 Now, we must find an N, for which  

 
1/(N+1) +ε ≤ 1/N - ε ⇔1/(N+1) – 1/N ≤ -2ε ⇔ 1/N(N+1) ≥ 2ε ⇔ N2 + N – 1/(2ε) ≤ 0 

 
 A simple calculation shows that minimum N that satisfies this equation equals 
the integer part of  
 

 

 
 

                                                 
13 Look up “Fractal Geometry”, page 45 for a different solution of this example 
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 Now we need to find inequalities for N and 1/N. Since N is the integer part of 
the above number, we know that 
 

 
 
and a simple transformation of these two inequalities yields 
 

 Putting these inequalities into the equation for the 1-dimensional volume of 
the ε - neighbourhood of F, very easily we get the following inequalities 
 

or 
 

If we take logarithms of these terms, divide through with ln ε and take the limit as 
ε→0 of the right hand side inequality, and the left hand side inequality, we get 

and 

 
So, finally, we get the Minkowski dimension of this set: 

 
dimMF = 1 – ½ = ½ 

 
 No one would regard this set, with all of its points isolated, as a fractal, and 
yet it has fractional Minkowski dimension of ½ . 
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Example 3.4  The following example is rather harder to do rigorously, so some 

approximations have to be made. Let F = { 1 / nα} ⊂  !, where α > 0. We get the  ε - 
neighbourhood of F in this case by putting a small interval [1/kα - ε, 1/kα + ε] around 
every element 1/kα of F.  After  a  while,  for n=N ∈  ",  the intervals  [1/(N+1) α - ε, 
1/(N+1) α + ε] and [1/Nα - ε, 1/Nα + ε] will start to overlap, so we will get one interval 
[-ε, 1/Nα + ε], while for n<N, the intervals remain disjoint and with length 2ε.  So the 
1-dimensional volume (length) of the ε - neighbourhood  of  F is 
 

 
Now, we must find an N, for which  

 
 Since 1 / (N + 1)α can be approximated by 

 
we get that 

 
 
which can be easily solved to find the N which approximately satisfies the equation 
above, to get 
 

 
 Putting this into the equation for the 1 - dimensional volume of the ε - 
neighbourhood Fε, we get that 

 
 Finally, we can find the Minkowski dimension of F in the following way 
 

∑
−

=

+=++−=



 +−+=

1

1

1 12212)1(1,2)(
N

i N
N

N
N

N
lengthFvol αααε εεεεεε

( ) εαα 2
1

11 ≈
+

−
NN

( ) 




 −≈





 +=






 +

=
+

−

NNNN
N

NN
α

α

α

αααα 11111
11

11
1

1

( ) εαα
ααααα 2111

1
11

1 ≈=




 −−≈

+
− +NNNNNN

1
1

2
+






≈

α

ε
αN

( ) ( )


















+=





+





≈

+
++

++ 1
1

1
1

11
1

1 122
2

2)(
α
α

αα
αα

α
α

ε α
αε

α
ε

ε
αεFvol



 14 

 
 So, the dimension of F is 1/(α+1), for α > 0, which corresponds to the 
previous example, where the case was α=1. Again we get that the dimension of the set 
is fractal, and yet this set at the first look would not appear to be a fractal.  
 
 
 With this I close the discussion about the (ordinary) Minkowski dimension, 
noting once again that it is in some cases much easier to calculate than the Hausdorff 
dimension, although there are cases where the Hausdorff dimension is the right 
choice. Minkowski dimension, however, is used to define the ‘interior dimension’ of 
the boundary of F, and that is what the next and final part of this essay covers. 
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4. Interior Minkowski dimension of the boundary 

 
 
 
 The notion of the ‘interior Minkowski dimension’  is a very important notion 
in fractal geometry, since it is connected with the problem of the eigenvalue counting 
function,  
 

N(λ) = # { λ j (Ω) < λ }, 
 

where Ω is a bounded open set in !n ( n ≥ 2), with fractal boundary ∂Ω 14. Here I 
don’t go deeper into the this particular problem, but the notion of the interior 
Minkowski   dimension should be explained further.  
 
 First we need to define the interior ε - neighbourhood of  the boundary ∂Ω of 
a bounded open set Ω in  !n ( n ≥ 2) is defined by 
 
 

∂Ωε
i = { x ∈  Ω : dist ( x, ∂Ω ) < ε} 

 
 

where dist( . , .) denotes the Euclidean distance in !n. 
 
 Having this in mind, let us state the definition of the interior Minkowski 
dimension: 
 
 Let Ω be a bounded open set in !n ( n ≥ 2), with very irregular (fractal) 
boundary ∂Ω. Then the interior Minkowski dimension of ∂Ω is 
 

 

 
 
where ∂Ωε

i is the interior  ε - neighbourhood of  the boundary ∂Ω. 
 
 
 I will not go much deeper into this problem, but here follow a couple of 
examples (one simple and one more interesting) which use this notion of the interior 
dimension of the boundary. The first one we have already seen in the previous section 
(Example 3.3), but this time the example will be modified to fit this notion.  
 
 
 

                                                 
14 For further details on this, look Fleckinger – Pellé and Vassiliev, “An example...”, or “Techniques 
in Fractal Geometry”, page 226. 
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Example 4.1 Let Ω = { x ∈  !2 : | x | ≤ 1} ⊂  !2. Let us find the interior 

Minkowski dimension of the boundary of Ω. First, we need to define the boundary 
∂Ω. We get that 
 

∂Ω = { x ∈  !2 : | x | = 1} ⊂  !2 
 

This is a circle !2 with radius 1 and centered at 0. And so the interior ε - 
neighbourhood of ∂Ω is 
 

∂Ωε
i = { x ∈  Ω : dist( x, ∂Ω ) < ε}. 

 
 This is a ‘ring’ that lies between two circles centered at 0, with radii 1 and   
(1 - ε). So the 2 – dimensional volume (area) of the  ε - neighbourhood  ∂Ωε

i is 
 

 
 So finally we get the interior Minkowski dimension of ∂Ω 
 

 
 So the interior Minkowski dimension of ∂Ω is 1, which was only to be 
expected, since it is a curve. 
 
 
 

Example 4.2 15 Let s be a positive given number satisfying 
 

1 + √2 < s < 3 
 

 Let us consider in !2  the open set Q, which consists of a union of open 
squares. The central square Q0 has side 1. The side of each of the 4 consecutive 
squares Q1 is s times smaller; these squares are “sticked” on the middles of the sides 
of Q0.  
 

We now have 4 × 3 “free” sides with length s-1; on each middle part of the 
sides we “stick” again one square Q2 with side s-2 etc. At the kth step we have 
 
 

nk = 4/3 × 3k ,          k ≥ 1, and  n0 =1 
 

squares Qk with sides s-k. 
 
 
 

                                                 
15 Taken from Fleckinger – Pellé and Vassiliev, “An example...” 
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 We denote by Q the union of all these squares for k = 0, 1, 2, .... .  Note that  Q 
is disconnected; moreover it follows from the fact 1 + √2 < s < 3 that the squares do 
not overlap and that Q is with finite measure. 
 
 The interior Minkowski dimension di of ∂Q is 
 

di  = ln 3 / ln s. 
 

 This can be derived by a simple calculation, since for a given ε > 0  
 

 
where k is such that 
 

s-(K+1) < 2 ε ≤  s-K. 
 

 Note that it follows from the first equation ( 1 + √2 < s < 3 ) that 1 < di < 2. 
 
 With that, I finish off this section about the interior Minkowski dimension of 
the boundary. Considering that this area of fractal geometry was not covered in much 
depth, I suggest that you look up one of the works mentioned in the Bibliography for 
further reference. 
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5. Conclusion 
 
 

 Although this essay does not require a conclusion as such, I think it would be 
only appropriate to sum up the impressions I got while working on it.  
 
 Fractal geometry is an extraordinary part of mathematics, and its mathematical 
background is not as recent as people would expect. On the other hand, the potential 
of the use of this branch of mathematics has only been discovered some years ago, 
and fractal geometry hasn’t ‘looked back’ since. Although the notion of a ‘fractal 
dimension’ appeared to me at first to be ‘over the top’, the more I learned about it and 
used it, the more interested I became. I am very glad to have had the opportunity to do  
this essay, and it has made a great impact on me. 
 
 Finally, I would like to dedicate this work (if I may) to the memory of Felix 
Hausdorff, one of many victims of the Nazi regime in Germany – I can’t understand 
how such a man could be considered to be a member of the ‘lesser race’ 16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

                                                 
16 In 1942 he could no longer avoid being sent to the internment camp and, together with his wife and 
his wife's sister, Felix Hausdorff committed suicide 
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