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Metric – affine gravity

Alternative theory of gravity.

Natural generalization of Einstein’s GR, which is based on a
spacetime with Riemannian matric g of Lorentzian signature.

We consider spacetime to be a connected real 4-manifold M
equipped with Lorentzian metric g and an affine connection Γ.

SPACETIME MAG={M, g , Γ}
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Metric – affine gravity

MAG ⇒ R 6= 0 ∧ T 6= 0,

GR ⇒ R 6= 0 ∧ T = 0.

The 10 independent components of the symmetric metric tensor
gµν and 64 connection coefficients Γλµν are unknowns of MAG.
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Metric – affine gravity

In QMAG, we define our action as

S :=

∫
q(R) (1)

where q(R) is a quadratic form on curvature R.

The quatratic form q(R) has 16 R2 terms with 16 real coupling
constants.

Why we use quadratic form?
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Quadratic metric – affine gravity

The system of Euler – Lagrange equations:

∂S

∂g
= 0, (2)

∂S

∂Γ
= 0. (3)

Objective: To study the combined system of field equations (2)
and (3) which is system of 10+64 real nonlinear PDE with
10+64 real unknowns.
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Solutions of QMAG

Special case of q(R) is

q(R) := Rκ
λµνRλ µν

κ

so we get Yang - Mills theory for the affine connection.

Riemannian and non–Riemannain solutions.

Definition

We call a spacetime {M, g , Γ} Riemannian if the connection is
Levi–Civita, i.e. Γλµν =

{
λ
µν

}
and non–Riemannian otherwise.
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Solutions of QMAG

Only after these variations we set the connection to be Levi–Civita
and consider Riemannian solutions of the field equations.

D. Vassiliev proved that the following spacetimes

Einstein spaces (Ric = Λg),

pp-spaces with parallel Ricci curvature
(pp–metric+∇Ric = 0), and

Riemannian spacetimes which have zero scalar curvature and
are locally a product of Einstein 2–manifolds
(Levi–Civita+R = 0),

are solutions of the system (2),(3).
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Solutions of QMAG

Definition

We call a spacetime {M, g , Γ} a pseudoinstanton if the connection
is metric–compatible and curvature is irreducible amd simple..

It is the case that there are only three types od pseudoinstantons:

scalar pseudoinstanton: R(1) 6= 0,

pseudoscalar pseudoinstanton: R
(1)
∗ 6= 0,

Weyl pseudoinstanton: R(10) 6= 0.

Theorem (Vassiliev)

A pseudoinstanton is a solution of the field equations (2), (3).
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Classical pp–spaces

PP–spaces are well–known spacetimes in GR (Brinkmann,Peres).

Meaning of the pp?

A very simple formula for curvature: only trace–free Ricci and
Weyl.

Definition

A pp–wave is a Riemannian spacetime whose metric can be written
locally in the form

ds2 = 2dx0dx3 − (dx1)2 − (dx2)2 + f (x1, x2, x3)(dx3)2 (4)

in some local coordinates (x0, x1, x2, x3).
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Generalized pp-waves

In a classical pp–space we consider the polarized Maxwell equation

∗ dA = ±idA. (5)

We seek plane wave solution of (5):

A = h(ϕ)m + k(ϕ)l

ϕ : M → R, ϕ(x) :=

∫
M

l · dx .

Definition

A generalized pp-wave is a metric compatible spacetime with
pp–metric and torsion

T :=
1

2
Re(A⊗ dA).
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New representation of the field equations

We write down explicitly our field equations (2), (3) under
following assumptions:

(i) our spacetime is metric compatible,

(ii) curvature has symmetries

Rκλµν = Rµνκλ , εκλµνRκλµν = 0,

(iii) scalar curvature is zero.
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Main result

The main result is

Lemma

Under the above assumptions (i)− (iii), the field equations (2),
(3) are

0 = d1WκλµνRicκµ + d3

(
RicλκRic ν

κ −
1

4
gλνRicκµRicκµ

)
(6)
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0 = d6∇λRicκµ − d7∇κRicλµ

+ d6

(
Ric η

κ (Kµηλ − Kµλη) +
1

2
gλµWηζ

κξ (Kξ
ηζ − Kξ

ζη ) +
1

2
gµλRic

η
ξ Kξ

ηκ

+gµλRic
η

κ Kξ
ξη − Kξ

ξλRicκµ +
1

2
gµλRic

ξ
κ (Kη

ξη − Kη
ηξ )

)
− d7

(
Ric η

λ (Kµηκ − Kµκη) +
1

2
gκµWκζ

λξ (Kξ
ηζ − Kξ

ζη ) +
1

2
gµκRic

η
ξ Kξ

ηλ

+gκµRic
η

λ Kξ
ξη − Kξ

ξκRicλµ +
1

2
gµκRic

ξ
λ (Kη

ξη − Kη
ηξ )

)
+ b10

(
gµλWηζ

κξ (Kξ
ζη − Kξ

ηζ ) + gµκWηζ
λξ (Kξ

ηζ − Kξ
ζη )

+gµλRic
ξ

κ (Kη
ηξ − Kη

ξη ) + gµκRic
ξ

λ (Kη
ξη − Kη

ηξ )

+gκµRic
η

λ Kξ
ξη − gλµRic

η
κ Kξ

ξη + RicµκK
η
λη − RicµλK

η
κη

)
+ 2b10

(
Wη

µκξ (Kξ
ηλ − Kξ

λη ) +Wη
µλξ (Kξ

κη − Kξ
ηκ )

−KµξηWηξ
κλ − Kξ

ξηW
η
µλκ

)
(7)

where d1, d3, d6, d7, b10 are some real constants.



Discussion

Theorem

Generalized pp–spaces of parallel Ricci curvature are solutions of
the system (6), (7).

The proof is done by ‘brute force’.

Singh: On axial vector torsion in vacuum quadratic Poincaré gauge
field theory solutions of the vacuum field equations with purely
axial torsion.

Conjecture

There exits a purely axial torsion waves which are solution of the
field equations (2), (3).
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Discussion

We are going to try to generalize pp–waves as follows

Conjecture

There exists a new class of spacetimes with pp–metrics and purely
axial torsion which are solution of the field equations (2), (3).

Expectations:

to prove two conjectures above.

to give a physical interpretation of the new solutions and
compare them with existing Riemannian solutions.
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