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We consider generalised pp-waves with purely axial torsion, which we previously showed
to be new vacuum solutions of quadratic metric-affine gravity. Our analysis shows that

classical pp-waves of parallel Ricci curvature should not be viewed on their own. They are

a particular representation of a wider class of solutions, namely generalised pp-waves of
parallel Ricci curvature. We compare our pp-waves with purely axial torsion to solutions

of Einstein-Weyl theory, the classical model describing the interaction of gravitational

and massless neutrino fields.
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1. Introduction

Spacetime is considered to be a connected real 4-manifold M equipped with a

Lorentzian metric g and an affine connection Γ. This approach, where the con-

nection is viewed independently from the metric is called metric-affine gravity. In

quadratic metric-affine gravity, we define the action as S :=

∫
q(R) where q is

an O(1, 3)–invariant quadratic form on curvature R. Independently varying the

action with respect to the metric g and the connection Γ produces the system of

Euler–Lagrange equations which we will write symbolically as

∂S/∂g = 0 (1)

∂S/∂Γ = 0. (2)

We consider a pp-wave as a Riemannian spacetime which admits a parallel spinor

field. Classical pp-waves of parallel Ricci curvature were shown to be solutions of

(1), (2) by Vassiliev.1,2 In our previous paper Ref. 3, we introduced generalised

pp-waves with purely axial torsion as metric compatible spacetimes with pp-metric

and torsion T := ∗A, where A is a real vector field defined by A = k(ϕ)l, where l

is a real parallel null lightlike vector and k : R 7→ R is an arbitrary real function

of the phase ϕ : M 7→ R, ϕ(x) :=
∫
l · dx. If we were to write down the pp-metric

locally as

ds2 = 2 dx0 dx3 − (dx1)2 − (dx2)2 + f(x1, x2, x3) (dx3)2,

in some local coordinates (x0, x1, x2, x3), for lµ = (1, 0, 0, 0) and mµ = (0, 1,∓i, 0)

we get that ϕ(x) = x3+const. The torsion T is purely axial and the connection of a

generalised pp-wave with purely axial torsion is metric compatible. We have shown

that generalised pp-waves with purely axial torsion of parallel {Ric} are solutions of

(1), (2) in the Yang–Mills case. The remarkable property is that the curvature of a
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generalised pp-wave is a sum of the curvature of the underlying classical pp-space

−1

2
(l ∧ {∇})⊗ (l ∧ {∇})f (3)

and the curvature
1

4
k(ϕ)2Re ((l ∧m)⊗ (l ∧m))∓ 1

2
k′(ϕ)Im ((l ∧m)⊗ (l ∧m)) (4)

generated by a axial torsion wave traveling over the pp-space. Ricci curvature is

Ric =
1

2

(
f11 + f22 − k2

)
(l ⊗ l), (5)

where fαβ = ∂α∂βf and scalar curvature R is equal to zero. Similarly, the prop-

erty that curvatures (3) and (4) add up was also present in the case of generalised

pp-waves with purely tensor torsion, see Refs. 4, 5. In our previous paper Ref. 4,

we gave the physical interpretation of generalised pp-waves with purely tensor tor-

sion constructed in Ref. 5. Similarly to the approach of Ref. 4, now we want to

compare the generalised pp-waves with purely axial torsion to the solutions of the

classical models describing the interaction of gravitational and massless neutrino

fields, namely Einstein–Weyl theory.

Our torsion and torsion generated curvature can be interpreted as waves travel-

ing at speed of light. The underlying classical pp-space of parallel Ricci curvature

can then be viewed as the gravitational imprint created by a wave of some massless

matter field. As pointed out in Ref. 4, such a situation occurs in Einstein–Weyl

theory. We choose to deal with the complexified curvature

R := r (l ∧m)⊗ (l ∧m),

where r := 1
4k

2− i
2k
′. Note that the function r is a function of the phase ϕ and the

curvature (4) generated by the axial torsion is equal to Re(R). The curvature R is

polarized, i.e. ∗R = R∗ = ±iR, and it can be written as

Rαβγδ = σαβab ω
abcd σγδcd, (6)

where ω is some symmetric rank 4 spinor and σαβ are second order Pauli matrices

defined by σαβac := 1
2

(
σαaḃε

ḃḋσβcḋ − σβaḃε
ḃḋσαcḋ

)
and σ denotes their complex

conjugation. Resolving (6) with respect to ω yields

ω = ξ ⊗ ξ ⊗ ξ ⊗ ξ, (7)

where

ξ := r1/4 χ (8)

and χa = (1, 0) is the parallel spinor field of the underlying pp-space. Formula (7)

shows that the rank 4 spinor ω is the 4th tensor power of a rank 1 spinor ξ. Hence,

the curavture R is completely determined by the rank 1 spinor field ξ. The spinor (8)

satisfies the massless Dirac (or Weyl’s) equation (13). Indeed, as ∇χ = 0, checking

that ξ satisfies equation (13) reduces to checking that (r1/4)′ σµaḃ lµ χ
a = 0 , which

is straightforward using Pauli matrices for pp-waves from Ref. 4 and the explicit

formulae for l and χ in local coordinates.
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2. Einstein–Weyl Field Equations

We consider the action as

SEW := 2i

∫ (
ξa σµaḃ ({∇}µξ

ḃ
) − ({∇}µξa)σµaḃ ξ

ḃ
)

+K

∫
R, (9)

with the constant K = c4/16πG. In Einstein–Weyl theory the connection is as-

sumed to be Levi-Civita, so we obtain the Einstein–Weyl field equations varying

the action (9) with respect to the metric and the spinor, i.e.

∂SEW /∂g = 0, (10)

∂SEW /∂ξ = 0. (11)

The massless Dirac equation is obtained by varying the action (9) with respect to

the spinor. The variation of the first term of the action (9) with respect to the metric

yields the energy momentum tensor. For the detailed derivation of formula for the

energy momentum tensor see Appendix B of Ref. 4. The explicit representation of

the Einstein–Weyl field equations (10), (11) is

i

2

[
σνaḃ

(
ξ
ḃ{∇}µξa − ξa{∇}µξḃ

)
+σµaḃ

(
ξ
ḃ{∇}νξa − ξa{∇}νξḃ

)]
+i

(
ξa σηaḃ ({∇}ηξ

ḃ
)gµν − ({∇}ηξa)σηaḃ ξ

ḃ
gµν
)
−KRicµν +

K

2
Rgµν = 0, (12)

σµaḃ{∇}µ ξ
a = 0. (13)

3. Comparison of Metric-affine and Einstein–Weyl Solutions

The examination of the Eistein–Weyl field equations has a long history, see Refs. 6,

7, 8, 9, 10, 11, 12, 13, 14. One review of known solutions of Einstein–Weyl theory

is given in Ref. 4. The nonlinear system of equations (12), (13) has solutions in

the form of pp-waves. We wish to present a class of explicit solutions of (12), (13)

where the metric g is in the form of the pp-metric and the spinor ξ as in (8). The

spinor (8) satisfies the massless Dirac equation (13). The scalar curvature is zero

and as the spinor χ appearing in formula (8) is parallel, hence the equation (12)

now becomes

i

2
σνaḃ

(
ξ
ḃ{∇}µξa − ξa{∇}µξḃ

)
+
i

2
σµaḃ

(
ξ
ḃ{∇}νξa − ξa{∇}νξḃ

)
−KRicµν = 0.

We now need to determine under which conditions the above equation is satisfied.

Substituting formulae (5), (8) into the above equation, and using ∇χ = 0, we get

that

i(σνaḃl
µ + σµaḃl

ν)
(

(r1/4)′ r1/4 − r1/4 (r1/4)′
)
χaχḃ = Klµlν

(
f11 + f22 − k(x3)2

)
.

The condition that a pp-wave needs to satisfy to be a solution of Einstein–Weyl is

f11 + f22 = k(x3)2 +
2i

K

(
(r1/4)′ r1/4 − r1/4 (r1/4)′

)
, (14)
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since σµaḃχ
aχḃ = lµ. The complex valued function r(ϕ) can be chosen arbitrar-

ily and for the fixed function k(ϕ) it uniquely determines the RHS of (14). The

main difference between the two models is that in the metric-affine model the gener-

alised pp-wave solutions have parallel {Ric} curvature, whereas in the Einstein–Weyl

model the pp-wave type solutions do not necessarily have parallel Ricci curvature.

The comparison of this two types of solutions becomes much clearer in the case of

the monochromatic solutions as was done in Ref. 4. In the metric-affine case the

Laplacian of f can be any constant, while in the Einstein–Weyl case it is required

for it to be a particular constant, which is the consequence of conformal invari-

ance of the metric-affine model and the presence of the gravitational constant in

the Einstein–Weyl. The generalised pp-waves of parallel Ricci curvature are very

similar to pp-type solutions of the Einstein–Weyl model. According this conclu-

sion, similarly to Ref. 4, we propose that generalised pp-waves with purely axial

torsion and parallel Ricci curvature represent a metric-affine model for the massless

neutrino.
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